PINDY: A Novel, Pinene-Derived Bipyridine Ligand and Its Application in Asymmetric, Copper(I)-Catalyzed Allylic Oxidation†

Andrei V. Malkov,[‡] Marco Bella,^{‡,§} Vratislav Langer,^{||} and Pavel Kočovský^{*,‡}

Department of Chemistry, University of Glasgow, Glasgow G12 800, U.K., and Department of Inorganic Environmental Chemistry, Chalmers University of Technology, 41296 Go¨*teborg, Sweden*

*p.koco*V*sky@chem.gla.ac.uk*

Received May 26, 2000

ABSTRACT

The title bipyridine ligand (+)-6(PINDY), prepared in five steps from (-)-*β*-pinene, forms a stable complex with CuCl₂ (8) that has been characterized by X-ray crystallography to reveal an unusual geometry at Cu. Triflate 9 proved to catalyze asymmetric allylic oxidation (10 \rightarrow 11; rt, \sim 30 min, **49**−**75% ee).**

Transition metal complexes with $sp²$ -nitrogen as the ligating atom(s) constitute an important class of chiral catalysts¹ in which substituted oxazolines and bisoxazolines play the prime role.2 By contrast, 2,2′-bipyridyl and 1,10-phenanthroline3 received much less attention in asymmetric catalysis owing to the difficulties associated with their conversion into chiral molecules. $4-12$ Herein, we report on an expedient synthesis of the bipyridine ligand 6 (PINDY),¹³ derived from

birthday.

- "Chalmers University of Technology.
- (1) Noyori, R. *Asymmetric Catalysis in Organic Synthesis*; Wiley & Sons: New York, 1994.
- (2) For a recent overview, see: Pfaltz, A. *Acta Chem. Scand.* **1996**, *50*, 189.
- (3) For the rich coordination chemistry of bipyridine and phenathroline, see, e.g.: (a) Reedijk, J. In *Comprehensive Coordination Chemistry*; Wilkinson, G., Gillard, R. D., McCleverty, J. A., Eds.; Pergamon Oxford, 1987; Vol 2, p 73. (b) Lehn, J.-M. *Supramolecular Chemistry*; VCH: Weinheim, 1995.
- (4) (a) Ito, K.; Tabuchi, S.; Katsuki, T. *Synlett* **1992**, 575. (b) Ito, K.; Yoshitake, M.; Katsuki, T. *Tetrahedron* **1996**, *52*, 3905.

10.1021/ol006111k CCC: \$19.00 © 2000 American Chemical Society **Published on Web 08/31/2000**

 $(-)$ - β -pinene, and its application in asymmetric allylic oxidation.

ORGANIC LETTERS

2000 Vol. 2, No. 20 ³⁰⁴⁷-**³⁰⁴⁹**

The C_2 -symmetrical ligand $(+)$ -6 was synthesized via annulation of the pyridine ring to a building block originating from the chiral pool (Scheme 1): $(-)$ - β -Pinene $(-)$ -1 was oxidized (OsO₄, NaIO₄, Me₃NO, *t*-BuOH, H₂O, 80 °C, 2 h) to produce $(+)$ -nopinone $(+)$ -2 (64%) , ^{14, 15} which was converted into oxime 3 (NH₂OH·HCl, pyridine, ethanol).¹⁶ [†] Dedicated to Professor Otakar Červinka on the occasion of his 75th Reduction of the latter oxime with powdered iron in the

[‡] University of Glasgow.

[§] Exchange student from the Department of Chemistry, University of

⁽⁵⁾ Botteghi, C.; Schionato, A.; Chelucci, G.; Brunner, H.; Kürzinger, A.; Obermann, U. *J. Organomet. Chem.* **1989**, *370*, 17.

^{(6) (}a) Hayoz, P.; von Zelewsky, A. *Tetrahedron Lett.* **1992**, *33*, 5165. (b) Fletcher, N. C.; Keene, F. R.; Ziegler, M.; Stoeckli-Evans, H.; Viebrock, H.; von Zelewsky, A. *Hel*V*. Chim. Acta* **¹⁹⁹⁶**, *⁷⁹*, 1192. (c) Mamula, O.; von Zelewsky, A.; Bark, T.; Bernardinelli, G. *Angew. Chem., Int. Ed.* **1999**, *38*, 2945. For an overview, see: (d) Knof, U.; von Zelewsky, A. *Angew. Chem., Int. Ed.* **1999**, *38*, 303.

^{(7) (}a) Chen, C.; Tagami, K.; Kishi, Y. *J. Org. Chem.* **1995**, *60*, 5386. (b) Chen, C. *Synlett* **1998**, 1311.

⁽⁸⁾ Chelucci, G.; Pinna, G. A.; Saba, A. *Tetrahedron: Asymmetry* **1998**, *9*, 531.

⁽⁹⁾ Kwong, H.-L.; Lee, W.-S.; Ng, H.-F.; Chiu, W.-H.; Wong, W.-T. *J. Chem. Soc., Dalton Trans.* **1998**, 1043.

⁽¹⁰⁾ Rios, R.; Liang, J.; Lo, M. M.-C.; Fu, G. C. *Chem. Commun.* **2000**, 377.

presence of acetic anhydride¹⁷ (Fe, Ac₂O, toluene, AcOH, 0 $^{\circ}$ C, 10 min)^{18,19} led to enamide **4** (90%), which afforded the chloropyridine derivative **5** (70%) under the conditions of Vilsmeyer-Haack reaction (HCONMe₂, POCl₃, $0-5$ °C, 1

(11) For other chiral pyridine derivatives, see, e.g.: (a) Chelucci, G.; Pinna, G. A.; Saba, A. *Tetrahedron: Asymmetry* **1997**, *8*, 2571. (b) Chelucci, G. *Tetrahedron: Asymmetry* **1997**, *8*, 2667. (c) Chelucci, G.; Medici, S.; Saba, A. *Tetrahedron: Asymmetry* **1997**, *8*, 3183. (d) Chelucci, G.; Berta, D.; Saba, A. *Tetrahedron* **1997**, 53, 3843. (e) Nordström, K.; Macedo, E.; Moberg, C. *J. Org. Chem.* **1997**, *62*, 1604. (f) Bremberg, U.; Rahm, F.; Moberg, C. Tetrahedron: Asymmetry 1998, 9, 3437. (g) Wärnmark, K.; Stranne, R.; Cernerud, M.; Terrien, I.; Rahm, F.; Nordström, K.; Moberg, C. *Acta Chem. Scand.* **1998**, *52*, 961. For a recent overview of chiral pyridines, see: (h) Moberg, C.; Adolfsson, H.; Wärnmark, K. Acta Chem. *Scand.* **1996**, *50*, 195. (i) Canal, J. M.; Gómez, M.; Jiménez, F.; Rocamora, M.; Muller, G.; Duñach, E.; Franco, D.; Jiménez, A.; Cano, F. H. *Organometallics* **2000**, *19*, 966. For recent examples of bipyridine ligands with planar chirality, see ref 10 and: (j) Wörsdorför, U.; Vögtle, F.; Nieger, M.; Waletzke, M.; Grimme, S.; Glorius, F.; Pfaltz, A. *Synthesis* **1999**, 597. (k) Djukic, J.-P.; Michon, C.; Maisse-François, A.; Allagapen, R.; Pfeffer, M.; Do¨tz, K. H.; De Cian, A.; Fischer, J. *Chem. Eur. J.* **2000**, *6*, 1064.

(12) Chiral phenanthrolines: (a) Gladiali, S.; Chelucci, G.; Soccolini, F.; Delogu, G.; Chiessa, G. *J. Organomet. Chem.* **1989**, 370, 285. (b) Peña-Cabrera, E.; Norrby, P.-O.; Şjögren, M.; Vitagliano, A.; De Felice, V.; Oslob, J.; Ishii, S.; O'Neill, D.; Akermark, B.; Helquist, P. *J. Am. Chem. Soc.* **1996**, *118*, 4299. (c) Oslob, J. D.; Atermark, B.; Helquist, P.; Norrby, P.-O. *Organometallics* **1997**, *16*, 3015. Related nonchiral phenanthrolines: (d) Hansson, S.; Norrby, P.-O.; Sjögren, M. P. T.; Åkermark, B. *Organometallics* 1993, *12*, 4940. (e) Sjögren, M. P. T.; Hansson, S.; Akermark, B. *Organometallics* **1994**, *13*, 1963. (f) Frisell, H.; Åkermark, B. *Organometallics* **1995**, *14*, 561. (g) Sjögren, M. P. T.; Frisell, H.; Åkermark, B. *tallics* **1995**, *14*, 561. (g) Sjögren, M. P. T.; Frisell, H.; Åkermark, B.
Organometallics **1997**, *16*, 942, (h) Hagelin, H.: Åkermark, B.: Norrby *Organometallics* **1997**, *16*, 942. (h) Hagelin, H.; Akermark, B.; Norrby, P.-O. *Organometallics* **1999**, *18*, 2884.

(13) **PIN**ene-**D**erived bip**Y**ridine.

(14) Brown, H. C.; Weissman, S. A.; Perumal, P. T.; Dhokte, U. P. *J. Org. Chem.* **1990**, *55*, 1217.

 (15) (+)-Nopinone (+)-2 thus prepared from the commercially available (-)- β -pinene (-)-1 (Aldrich) exhibited $[\alpha]_D$ +34.7 (*c* 4.0 MeOH). Since the highest optical rotation reported for enantiopure nopinone is $[\alpha]_D + 39.9$ (0.3 (Grimshaw, N.; Grimshaw, J. T.; Juneja, H. R. *J. Chem. Soc., Perkin Trans. 1* **1972**, 50) or $[\alpha]_D$ +40.52 (*c* 4.0 MeOH),¹⁴ our nopinone corresponds to 86% ee.

(16) Identical with the known compound: (a) Hall, H. K. *J. Org. Chem.* **1963**, *28*, 3213. (b) Quon, H. H.; Chow, Y. L. *Tetrahedron* **1975**, *31*, 2349. (c) Yokoyama, Y.; Yunokihara, M. *Chem. Lett.* **1983**, 1245.

(17) For the method, see: Burk, M. J.; Casy, G.; Johnson, N. B. *J. Org. Chem.* **1998**, *63*, 6084.

h).²⁰ Stoichiometric, nickel (0) -mediated coupling of **5** (NiCl₂, Ph₃P, Zn, DMF, 60 $^{\circ}$ C, 18 h) furnished a mixture of the reduction product **7** (32%) and the desired dimer $(+)$ -6 (50%) ^{21,22}

Refluxing $(+)$ -6 (PINDY) with CuCl₂·H₂O in CH₂Cl₂-EtOH for 12 h (Scheme 2) resulted in the quantitative

formation of **8** (75% after recrystallization).²³ Single-crystal X-ray analysis of the latter complex revealed an unusually distorted geometry at the metal center (Figure 1), 24 which may have interesting implications for its catalytic activity.25

Figure 1. ORTEP diagram of $8 \cdot CH_2Cl_2$ showing the atom labeling scheme. Displacement parameters are shown at the 30% probability level. H atoms are shown as spheres of arbitrary radius.

To explore the catalytic potential of copper complexes of PINDY (6), we elected to study asymmetric allylic oxidation-

(20) For the method, see: Meth-Cohn, O.; Westwood, K. T. *J. Chem. Soc., Perkin Trans. 1* **1984**, 1173.

(21) For the method of α -chloropyridine dimerization, see ref 6a and the following: (a) Dehmlow, E. V.; Sleegers, A. *Liebigs Ann. Chem.* **1992**, *9*, 953. (b) Brenner, E.; Schneider, R.; Fort, Y. *Tetrahedron Lett.* **2000**, *41*, 2881.

(22) Although this coupling is, a priori, amenable to a catalytic process, reactions with sub-stoichiometric amounts (e.g., 10 mol %) of Ni(0) turned out to lead predominantly to the reduction product **7**.

⁽¹⁸⁾ The conversion of oximes into enamides has also been known to occur in the presence of strong reducing agents, such as $(AcO)₂Cr$ or $(AcO)₃Ti.¹⁹$ However, in view of the cost of the former and the difficulties associated with the availability of the latter reagent, none of them was particularly suitable for large-scale operations.

⁽¹⁹⁾ For the Ti(III) and Cr(II) reduction, see: (a) Boar, R. B.; McGhie, J. F.; Robinson, M.; Barton, D. H. R.; Horwell, D. C.; Stick, R. V. *J. Chem. Soc., Perkin Trans. 1* **1975**, 1237. (b) Barton, D. H. R.; Bowles, T.; Husinec, S.; Forbes, J. E.; Llobera, A.; Porter, E. A.; Zard, S. Z. *Tetrahedron Lett.* **1988**, *29*, 3343.

one of the reactions that have not yet been developed at a satisfactory level. The catalysts reported to date²⁶ often require several days to allow completion of the reaction^{26a} and, as a rule, the enantioselectivity does not exceed ∼80% ee.26 To increase the reactivity of the Cu/PINDY catalyst, triflate analogue **9** was generated from $(+)$ -6 and Cu(OTf)₂. Complex **9** was then reduced in situ with phenylhydrazine to the corresponding Cu(I) species. Oxidation of cyclohexene (**10b**) with *tert*-butyl peroxybenzoate, carried out in the presence of 1 mol % of the catalyst thus generated, proved to be complete within \leq 30 min at room temperature, giving (S) - $(-)$ -11b (96%, 49% ee). Improved enantioselectivity (55% ee) was observed at 0° C, but the reaction required 5 h in this instance²⁷ (Scheme 3).^{28,29} Similar results were

(23) For the preparation of Cu(II)-bipy complexes, see, e.g., ref 9 and the following: Bolm, C.; Ewald, M.; Zehnder, M.; Neuburger, M. A. *Chem. Ber.* **1992**, *125,* 453.

(24) Crystallographic data for **8**: $C_{24}H_{28}Cl_2CuN_2 \cdot CH_2Cl_2$, $M = 563.85$. Crystals were obtained from solution of the complex in CH₂Cl₂, covered by hexane and left at -18 °C for 2 days. They are orthorhombic, space group $P2_12_12_1$, $a = 10.3637(1)$ Å, $b = 3.6592(2)$ Å, $c = 17.9777(2)$ Å, V group $P2_12_12_1$, $a = 10.3637(1)$ Å, $b = 3.6592(2)$ Å, $c = 17.9777(2)$ Å, $V = 2544.92(5)$ Å³, $Z = 4$, $d_{calc} = 1.472$ g cm⁻³, $\mu = 1.295$ mm⁻¹, 30160
reflections collected 9036 unique $(R_{int} = 0.0198)$ with 8590 obser reflections collected, 9036 unique ($R_{int} = 0.0198$), with 8590 observed data having $I > 2\sigma_I$, $R_F = 0.0332$ for the observed data and w $R(F^2) = 0.0973$ for all data, Flack factor $= 0.003(7)$. The estimated error in C-C bond lengths is in the range of 0.002-0.003 Å.

(25) For a similar distortion, see ref 9. Several oxazoline-type Cu(II) complexes have also been reported to exhibit distortion at Cu (although not to the extend observed for **8**). For a recent summary, see: (a) Evans, D. A.; Miller, S. J.; Lectka, T.; von Matt, P. *J. Am. Chem. Soc.* **1999**, *121*, 7559. (b) Evans, D. A.; Barnes, D. M.; Johnson, J. S.; Lectka, T.; von Matt, P.; Miller, S. J.; Murry, J. A.; Norcross, R. D.; Shaughnessy, E. A.; Campos, K. R. *J. Am. Chem. Soc.* **1999**, *121*, 7582. (c) Evans, D. A.; Johnson, J. S.; Olhava, E. J. *J. Am. Chem. Soc.* **2000**, *122*, 1635.

(26) (a) Gokhale, A. S.; Minidis, A. B. E.; Pfaltz, A. *Tetrahedron Lett.* **1995**, *36*, 1831. (b) Andrus, M. A.; Argade, A. B.; Chen, X.; Pamment, M. G. *Tetrahedron Lett.* 1995, 36, 2945. (c) Södergren, M. J.; Andersson, P. G. *Tetrahedron Lett.* **1996**, *37*, 7577. (d) Hamachi, K.; Irie, R.; Katsuki, T. *Tetrahedron Lett.* **1996**, *37*, 4979. (e) Kawasaki, K.; Katsuki, T. *Tetrahedron* **1997**, *53*, 6337. (f) Clark, J. S.; Tolhurst, K. F.; Taylor, M.; Swallow, S. *J. Chem. Soc., Perkin Trans. 1* **1998**, 1167. (g) Sekar, G.; DattaGupta, A.; Singh, V. K. *J. Org. Chem.* **1998**, *63*, 2961. (h) Kohmura, Y.; Katsuki, T. *Tetrahedron Lett.* **2000**, *41*, 3941.

(27) Practically identical results were obtained with the Cu(I) complex generated directly from $(+)$ -6 and the more expensive $(CuOTf)_{2}$ ⁻ C_6H_6 .

(28) Since the starting (+)-nopinone (+)-**²** was not enantiomerically pure $(86\% \text{ ee})$,¹⁵ the observed enantioselectivities might, in principle, be higher. However, the synthesis of ligand (+)-**⁶** included several crystallizations, which may have contributed to the increase of enantiomeric purity of the final product. Although we failed to detect the opposite enantiomer in $(+)$ -6 by chiral HPLC and by NMR spectroscopy [in the presence of Eu(hfc)3], its ultimate precursor **5** was found to be of 95% ee by HPLC.

(29) **Typical Procedure for Allylic Oxidation Catalyzed by Cu(I)/ PINDY.** A green solution of $(+)$ -6 (21 mg, 0.06 mmol) and Cu(OTf)₂ (18 mg, 0.05 mmol) in acetone (4 mL) was stirred under a nitrogen atmosphere at 20 \degree C for 1 h. Phenylhydrazine (5.9 μ L, 0.06 mmol) was then added, and the color of the solution changed to red. After 10 min, cyclohexene **10b** (0.52 mL, 5 mmol) was added, followed by the dropwise addition of *tert*-butyl peroxybenzoate (0.2 mL, 1.0 mmol). The progress of the reaction was monitored by TLC (hexane/ethyl acetate 9:1). Disappearance of the peroxyester indicated the completion of the reaction. The solvent was removed in a vacuum, and the residue was dissolved in CH_2Cl_2 (15 mL),

obtained with cyclopentene **10a** (48% ee at rt and 59% ee at 0° C).³⁰ Cycloheptene, on the other hand, exhibited a substantially better enantioselectivity (62% ee at rt and 75% ee at 0° C).³⁰ In all cases the reaction was significantly slower at 0 $^{\circ}$ C (5-10 h).

In conclusion, novel, *C*₂-symmetrical bipyridine ligand $(+)$ -6 (PINDY) has been prepared from $(-)$ - β -pinene via a de novo construction of the pyridine ring followed by Ni- (0)-mediated dimerization. This ligand has been found to form a stable complex with $CuCl₂(8)$ that exhibits an unusual geometry at Cu, as revealed by X-ray crystallography. Triflate **9** proved to catalyze asymmetric allylic oxidation $(10 \rightarrow 11)$ with high efficiency and good enantioselectivity. These promising results suggest that optimization of the $counteranion³¹$ and of the ligand may lead to a very efficient catalytic system.32,33

Acknowledgment. We thank the University of Glasgow and the University of Rome "La Sapienza" for financial support.

Supporting Information Available: Experimental procedures for new compounds, analytical details for allylic oxidation, and crystallographic characterization of **8** and atomic coordinates. This material is available free of charge via the Internet at http://pubs.acs.org.

OL006111K

washed successively with a saturated aqueous $KHCO₃$ solution, brine, and water, and dried over MgSO4. Evaporation followed by chromatography on silica gel (20 \times 3 cm) with hexane/ethyl acetate (10:1) as eluent afforded pure cyclohexenyl benzoate (*S*)-11b (194 mg, 96%; \geq 49% ee). Chiral HPLC analysis: Chiralpak AD, hexane-isopropyl alcohol (99.6:0.4), flow rate 1 mL/min, $t_R = 12.6$ min (minor), $t_S = 13.8$ min (major), UV detection at 220 nm.

⁽³⁰⁾ The absolute configuration of the product was determined by comparison of its optical rotation with the known values.²⁶

⁽³¹⁾ For the role of the counterion in Cu(I)- and Cu(II)-catalyzed reactions, see, e.g., ref 25.

⁽³²⁾ Apparently, the reaction requires a trace of water since adding molecular sieves resulted in a dramatic deceleration (though the enantioselectivity remained essentially unaffected).

⁽³³⁾ Note that individual ligands²⁶ have different "optimal substrates"; in the case of PINDY it is **11c** that gives the highest enantioselectivity.